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In this paper we study the waves generated over the slipline and their interactions
with other waves for Mach reflection in steady two-dimensional supersonic flow.
We find that a series of expansion and compression waves exist over the slip line,
even in the region immediately behind the leading part of the reflected shock wave,
previously regarded as a uniform flow. These waves make the leading part of the
slipline, previously regarded as straight, deviate nonlinearly towards the reflecting
surface. When the transmitted expansion waves from the upper corner first intersect
the slipline, an inflexion point is produced. Downstream of this inflexion point,
compression waves are produced over the slipline. By considering the interaction
between the various expansion or compression waves, we obtain a Mach stem height,
the shape and position of the slipline and reflected shock wave, compared well to
computational fluid dynamics (CFD) results. We also briefly consider the case with a
subsonic portion behind the reflected shock wave. The global flow pattern is obtained
through CFD and the starting point of the sonic line is identified through a simple
analysis. The sonic line appears to coincide with the first Mach wave from the upper
corner expansion fan after transmitted from the reflected shock wave.

1. Introduction
It is well known that the reflection of oblique shock waves over a horizontal

plane results in two types of wave configurations, regular reflection (RR) and Mach
reflection (MR). The phenomenon of MR was first observed by Mach (1878). A
considerable number of studies have been made for when and how both types of
reflection occur. Von Neumann (1943, 1945) developed the three-shock theory and
proposed two transition criteria from RR to MR and vice versa: the reflected shock
wave detachment criterion and the mechanical equilibrium criterion, or von Neumann
criterion. These two criteria are separated by a zone now called dual solution domain,
where both RR and MR are possible (Henderson & Lozzi 1975, 1979; Hornung &
Robinson 1982; Chpoun et al. 1994, 1995; Vuillon, Zeitoun & Ben-Dor 1995;
Teshukov 1989; Li & Ben-Dor 1996). Whether it is an RR or an MR in the dual
solution domain depends on the history that the actual steady flow is built (Hornung,
Oertel & Sandeman 1979; Chpoun et al. 1995; Ivanov, Gimelshein & Beylich 1995;
Shirozu & Nishida 1995; Ben-Dor, Elperin & Vasiliev 2003).

Figure 1 identifies various regions pertaining to the free-stream Mach number M0

and wedge angle θw . MR can only occur for θN
w � θw � θM

w , where θN
w is von Neumann

criterion and θM
w is the incident shock wave detachment criterion. In case of MR,
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Figure 1. Domains of different types of reflection in the (M0, θw)-plane, and RR and MR.

a triple point (T ) exists which connects the incident shock wave (i), reflected shock
wave (r), Mach stem (m) and slipline (s). The flow behind the reflected shock is
supersonic (M2 > 1) for θw < θS

w and subsonic (M2 < 1) for θw < θS
w (Chow & Chang

1974), where θS
w corresponds to the wedge angle at which M2 = 1. A three-shock

configuration is called ‘standard’ if θ1 − θ2 = θ3, and ‘non-standard’ if θ1 + θ2 = θ3

(Ben-Dor 2007). These two cases are separated by the line θ2 = 0 (figure 1).
A number of studies have been devoted to the position of the triple point (T ), Mach

stem height (Hm) and shape of the waves. Chow & Chang (1974) studied the Mach
stem for nozzle free jet problem, where the expansion fan comes from the reflection
of the reflected shock wave over a free surface. Azevedo (1989) and Azevedo & Liu
(1993) developed a model for predicting Hm (see figure 2a). They assumed that the
sonic throat occurs where the leading Mach wave of the expansion fan intersects the
slip stream. They considered the subsonic pocket to be an isotropically quasi-one-
dimensional converging ideal gas flow and the slipline from the triple point to the
sonic throat to be a straight line. They applied von Neumann’s three-shock theory for
the triple point T and the quasi-one-dimensional isentropic relation for the subsonic
pocket T OKE.

Li & Ben-Dor (1997) allowed the sonic throat to occur further downstream (see
figure 2b) and assumed that the Mach stem (m), the reflected shock wave (r) and the
slipline (s) are slightly curved. They ignored the influence of the reflected waves when
the transmitted expansion waves (BF or CE) strike the slipline.

Recently, Mouton & Hornung (2007) studied the growth rate of the Mach stem
height during the RR → MR transition. When the transition is finished, the Mach
stem height is the steady-state one. They assumed that the Mach stem (T O), the
reflected shock wave (T B), the slipline (T E) and the Mach waves (RC, CE) all
maintain a straight line (see figure 2c) during the transition. They obtained the height
of the Mach stem using the geometrical relationship established between straight
segments AT , T C, RC, CE, EK and model-scale quantities w, H0.

The above models provide useful and fast way to determine the Mach stem height.
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Figure 2. Schematic illustration of the MR configuration used by (a) Azevedo & Liu (1993),
(b) Li & Ben-Dor (1997) and (c) Mouton & Hornung (2007).

The shape of the Mach stem has been early studied experimentally for pseudo-
steady reflections (Dewey & McMillin 1985a, b; Olim & Dewey 1992; Dewey & Barss
1996). The shape of the Mach stem has also been studied by Li, Ben-Dor & Han
(1994) for pseudo-steady reflections, and by Li & Ben-Dor (1997) for steady flows
using a geometrical point of view. Tan, Ren & Wu (2006) performed an analysis of
the subsonic flow pocket immediately behind the Mach stem and derived the relation
(x +

√
R2 − H 2

m)2 +y2 = R2 for the shape of the Mach stem. Here R = (α/θ3)Hm with

α = 2
(
M2

0 − 1
)
/(2 + (γ − 1) M2

0 ). Hence, the Mach stem is a circular arc centred at

(−
√

R2 − H 2
m, 0).

Despite the previous contributions, there still remain some unresolved issues which
we believe important. First, the previous models yield Hm, though with a good
precision in comparison with the simplicity of the model, either too small or too large
in comparison with the CFD results. It seems that some important physics were not
considered. Second, CFD results (§ 2.1) show that the flow immediately behind the
leading part of the reflected shock wave is not a uniform one, in contrast to what we
have normally assumed. Is this simply numerical error in CFD or is there a physical
reason behind it? Third, there was no study about the shape and positions of the
slipline and reflected shock waves, though Dewey & McMillin (1985a, b) measured the
shapes of the incident, reflected and Mach stem shocks for the pseudo-steady cases.

In § 2, we will show through CFD that the flow immediately behind the leading part
of the reflected shock wave is not uniform in contrast to what we have assumed in
the previous studies. We then relate this non-uniformity to expansion waves produced
over the leading part of the slipline for the case M2 > 1 and to the pressure decrease
below the slipline for the case M2 < 1. The production of other waves and their
interactions with other waves are also described.

For the case M2 > 1, a global algorithm is built to solve the entire problem,
including the shape of the slipline and reflected shock wave, the overall solution and
the Mach stem height. The results are presented and analysed in § 3, where we also
briefly consider the case M2 < 1, for which there is the difficult problem of the shape
of the sonic line.
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Figure 3. Wavy nature of the slipline due to Kelvin–helmholtz instability and parasitic
waves.

2. Flow structure of Mach reflection
2.1. Details of the Mach reflection configuration

We begin with displaying refined CFD results, using the same numerical method as
in Tan et al. (2006), proposed by Ren (2003), to show that waves, previously not
observed, are produced over the slipline. We then describe the various flow structures
that exist in MR.

Even though current CFD method can well be used to compute MR, there is
the grid refinement inconvenience. The grid should be refined enough to have more
accurate solution. But if the grid is fine enough, the slipline will display Kelvin–
helmholtz instability (Samtaney & Pullin 1996; Ivanov et al. 2002) due to numerical
viscosity. The rolling of the slipline will produce parasitic waves (figure 3) which spoil
CFD results. In the subsequent (theoretical) study, we will disregard the rolling up of
the slipline.

In figure 4(a) we display the density contour lines for two kinds of mesh density
(300 × 200 and 600 × 400) under the flow conditions M0 = 2.84, θw = 20.8 and
w/H0 = 1.42. The overall configurations are very similar to each other except for
the regions near the slipline, where the transmitted Mach waves with the refined grid
are deformed due to the curl of the slipline. The normalized Mach stem height is
0.191 using both of the two kinds of mesh density. Figure 4(b) shows the comparison
for M0 = 4.5, θw = 25 and w/H0 = 1.1, where the normalized Mach stem height
is 0.131 and 0.132 using coarse grid and refined grid, respectively. Since there is no
essential difference of results between the two grids, the mesh density 300 × 200 is
used throughout the rest of this paper.

Now we display in figure 5 the density, pressure and Mach number contours for
two flow conditions. We observe non-uniformity of the flow immediately behind the
leading part of the reflected shock wave, which is nevertheless regarded as uniform in
all the previously studies. Figure 5(a) corresponds to the case where the flow behind
the reflected shock wave is purely supersonic. We observe a series of expansion waves
over the leading part of the slipline. Figure 5(b) corresponds to the case for which
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Figure 4. Density contours showing the structure of the MR in the gird refinement study.
(a) M0 = 2.84, θw = 20.8o, w/H0 = 1.42, (b) M0 = 4.5, θw = 25, w/H0 = 1.1.
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Figure 6. Schematic illustration of the Mach reflection wave configuration.

there is a subsonic flow behind the reflected shock wave, the flow then transits from
subsonic to supersonic.

The non-uniformity behind the reflected shock wave in fact has a physical
background. The left part of the slipline, normally regarded as a straight line, is
in fact subjected to the influence of varying pressure in the flow tube between
the reflecting surface and the slipline. Since the slipline firstly deviates towards
the reflecting surface, this tube is convergent along the flow direction. Hence the
pressure continuously decreases, according to the quasi-one-dimensional-flow theory
for subsonic flow. In order to balance this pressure decrease, expansion waves must
be produced above the slipline, which makes the flow become non-uniform in the
region immediately behind the reflected shock wave, and makes the slipline further
deviate towards the reflecting surface on the other hand. This means the slipline is
not a straight one.

In figure 6 we sketch the MR configuration including waves produced over the
slipline and their interaction with other flow structure.The basic flow structures include
the reflected shock wave (r), the slipline (s), the Mach stem (m), the triple point (T ),
expansion waves (Rc) by the upper corner. The interaction of Rc with r , for instance,
at point G, produces transmitted Mach waves (Rt ) and slipline (ct ).

The pressure decrease along the slipline, for instance, at point A, produces a series
of expansion waves (Rs). The reflection of Rt over the slipline, for instance, at point C,
produces reflected waves (Cs). Apparently, it is not clear whether Cs is a compression
or an expansion wave. In § 3, we will show that Cs is always compressive even near
the point B . The reflection of Rs over the reflected shock (r), for instance, at point
E, produces reflected expansion or compression waves (Cr ) and sliplines (cr ). The
expansion waves Rs and the compression waves Cs also intersect the transmitted
waves (Rt ), for instance, at point D and H , respectively. When M2 < 1, a sonic line
(M = 1) also exists (figure 6c). The position of the sonic line (s1 and r1) and its shape
are new features compared to the case M2 > 1.

2.2. Physical model for the case M2 > 1

Here, we describe the physical model to describe the various flow structure as sketched
in figure 6. This model will be used to build an algorithm for the shape of slipline,
reflected shock wave and Mach stem height. Following conventional notations, we
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use ρ, p, V , a, M , γ to denote the density, pressure, velocity, sound speed, Mach
number and ratio of specific heats of the gas, respectively. We also use β and θ to
denote the shock angle and flow deflection angle across an oblique shock wave. In
this section we only consider the case M2 > 1, and the situation with M2 < 1 will be
briefly considered in § 3.3.

2.2.1. Recall of shock relations and three-shock theory

For oblique shock waves connecting the downstream flow (with subscript ‘1’) to the
upstream one (with subscript ‘0’), the following classical shock relations hold

M2
1 = f (M0, β1) , p1/p0 = g(M0, β1), ρ1/ρ0 = h (M0, β1) ,

a1/a0 = A (M0, β1) , S (M0, β1, θ1) = 0,

}
(2.1)

where

f (M, β) ≡
M2 + 2

γ − 1
2γ

γ − 1
M2 sin2 β − 1

+
M2 cos2 β

γ − 1
2

M2 sin2 β + 1
,

g (M, β) ≡ 2γ

γ + 1
M2 sin2 β − γ − 1

γ + 1
,

h (M, β) ≡ (γ + 1) M2 sin2 β

(γ − 1) M2 sin2 β + 2
,

A (M, β) ≡
[
(γ − 1) M2 sin2 β + 2

]1/2 [
2γM2 sin2 β − (γ − 1)

]1/2

(γ + 1) M sinβ

and

S (M, β, θ) ≡ 2 cotβ
M2 sin2 β − 1

M2 (γ + cos 2β) + 2
− tan θ.

In the well-known triple-point theory, the shock relation (2.1) is applied, at the
triple point (T ), across the incident shock (i) for weak solution, the reflected shock
wave (r) for weak solution normally, but at the case M2 < 1, for strong solution, and
the Mach stem (m) for strong solution. The pressure across the slipline is continuous
p2 = p3, and the flow deviation angles satisfy θ3 = θ1 − θ2 for ‘standard’ three-shock
configuration and θ3 = θ1 + θ2 for ‘non-standard’ three-shock configuration. The
equations can be solved by an iterative process starting from an initial guess for the
angle θ2.

2.2.2. Expansion and compression waves produced over the slipline

In figure 7 we display the production of expansion or compression waves over
the slipline. The pressure decrease along the flow tube below the slipline, when
approximated by the quasi-one-dimensional flow theory, is related to the sectional
height or the y position of the slipline (Hs) of the tube by

dp

p
=

γM2
b

1 − Mb

dHs

Hs

. (2.2)

Here Mb is the Mach number below the slipline (averaged over the height in the
quasi-one-dimensional flow theory).
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Figure 7. Expansion and compression waves produced over the slipline. (a) Expansion
waves (Rs), and (b) compression waves (Cs).

The sectional height Hs , at any position with a Mach number Mb, is related to the
height H ∗

s of the sonic throat through

Hs

H ∗
s

= σ (Mb) , σ (M) =
1

M

(
1 +

γ − 1

2
M2

)(γ+1)/(2(γ −1))

. (2.3)

Geometrically, the variation of Hs can be expressed also as a function of the local
angle of the slipline

dHs = −θdx. (2.4)

Considering figure 7(a), the variation of the angle θ produces expansion (Mach)
waves (Rs) over the slipline. Let the local Mach number immediately above the slipline
be Ma , we have the following classical relations for expansion waves

dθ = ν (Ma + dMa) − ν (Ma) ,
p + dp

p
= χ (Ma, Ma + dMa) , sinµa =

1

Ma

, (2.5)

where µ is the Mach angle, and ν (M) is the Prandtl–Meyer function

ν (M) =

√(
γ + 1

γ − 1

)
arctan

√[
γ − 1

γ + 1
(M2 − 1)

]
− arctan

√
(M2 − 1)

and

χ (M0, M1) =

(
2 + (γ − 1) M2

0

2 + (γ − 1) M2
1

)γ /(γ −1)

.

Once H ∗
s is given, the above equations, which form a closed set, can be used to

determine the shape of the slipline before it intersects the transmitted waves (Rt ), as
well as the intensity and direction of the expansion waves (Rs).

Now consider the slipline after the transmitted waves intersect it (after point B).
Below the slipline, the relations (2.2)–(2.4) still hold. The pressure variation dp below
the slipline is balanced by both the incident transmitted wave (Rt ) and the reflected
compression wave (Cs). The flow parameters between Rt and Cs satisfy

dθ1 = ν (Ma + dMa1) − ν (Ma) ,
p + dp1

pa

= χ (Ma, Ma + dMa1) , sinµa =
1

Ma

. (2.6)

Actually, the intensity and direction of the incident wave (Rt ) and Ma +dMa1, p+dp1,

θ + dθ1 are determined by the interaction of the waves Rt with Cs , which will be
described in § 2.2.4. Thus, we do not have to use (2.6) to obtain Ma + dMa1, p + dp1,

θ + dθ1.
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Assume Cs to be a compression wave, we may use the following shock relation for
Cs

(Ma + dMa)
2 = f

(
Ma + dMa1, βCs

)
,

p + dp
p + dp1

= g
(
Ma + dMa1, βCs

)
,

S
(
Ma + dMa1, βCs

, dθ − dθ1

)
= 0.

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

One may also use the Prandtl–Meyer relation (2.5) for Cs . In case that θ varies
smoothly, both types of relations yield the same results. The above three relations,
for the four parameters dMa , dp, dθ and βCs

should be supplemented by one more
relation evolved from (2.2)–(2.4), that is,

dp

p
= − γM2

b

1 − Mb

θ

Hs

dx, (2.8)

where Hs satisfies (2.3).

2.2.3. Transmitted and reflected waves from the reflected shock wave

Considering figure 8(a), the expansion wave Rs , when striking the reflected shock
wave r , produces a reflected expansion or compression wave (Cr ) and a slipline (cr ).
Before interacting with Rs , the flow parameters immediately behind r satisfy

M2
1 = f (M0, β1) , p1/p0 = g (M0, β1) , S (M0, β1, θ1) = 0. (2.9)

Knowing the intensity and direction of the incident wave r , we can obtain the flow
parameters in region 1. Across Rs we have the Plandtl–Meyer relations

ν (M2) − ν (M1) = θ2, p2/p1 = χ (M1, M2) . (2.10)

Then the flow parameters after Cr satisfy

ν (M3) − ν (M2) = θ3, p3/p2 = χ (M2, M3) . (2.11)

Apparently, it is not clear whether Cs is an expansion wave or a compression wave.
When solving the above equation, θ3 > 0 corresponds to an expansion wave and
θ3 < 0 corresponds to a compression wave.

After interacting with Rs , the intensity of the reflected shock (r ′) become a little
weaker, across which the shock relation gives

M2
4 = f (M0, β4) , p4/p0 = g (M0, β4) , S (M0, β4, θ4) = 0. (2.12)
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The above five relations equation (2.11)–(2.12), for the seven parameters M3, p3,
θ3, M4, p4, θ4 and β4, should be supplemented by the pressure and deflection angle
continuity across the slipline (cr ),

θ1 − θ2 + θ3 = θ4, p3 = p4. (2.13)

The expansion wave Rc transmitting from the reflected shock wave r (figure 8b)
produces a transmitted expansion wave (Rt ), a slipline (ct ) and a transmitted shock
wave (r ′). Before interacting with each other, the flow parameters immediately behind
Rc satisfy

ν (M1) − ν (M0) = θ1, p1/p0 = χ (M0, M1) , (2.14)

and the flow parameters immediately behind r satisfy

M2
2 = f (M0, β2) , p2/p0 = g (M0, β2) , S (M0, β2, θ2) = 0. (2.15)

The intensity and direction of the incident wave Rc and r are given, so that from
(2.14) and (2.15) the flow parameters in region 1 and 2 can be obtained.

Across the transmitted expansion wave and shock, the parameters satisfy

ν (M4) − ν (M2) = θ4, p4/p2 = χ (M2, M4) , (2.16)

M2
3 = f (M1, β3) , p3/p1 = g (M1, β3) , S (M1, β3, θ3) = 0. (2.17)

The above five relations, for the seven parameters M3, p3, β3, θ3, M4, p4 and θ4,
should be supplemented by the pressure and deflection angle continuity,

θ1 + θ3 = θ2 + θ4, p3 = p4. (2.18)

2.2.4. Interaction between the transmitted waves and the waves generated from the
slipline

The flow region formed by the slipline (s), reflected shock wave (r) and the first
transmitted wave (FB in figure 6) is a region full of wave interactions. Considering
figure 9(a), the interaction between the transmitted expansion wave Rt and the
expansion wave Rs produces two more transmitted expansion wave R′

t and R′
s .

Knowing the intensity and direction of the incident waves, the flow parameters
immediately behind them (region 1 and 2) satisfy

ν (M1) − ν (M0) = θ1, p1/p0 = χ (M0, M1) ,

ν (M2) − ν (M0) = θ2, p2/p0 = χ (M0, M2) .

}
(2.19)
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Across the transmitted expansion waves, the parameters satisfy

ν (M3) − ν (M1) = θ13, p3/p1 = χ (M1, M3) ,

ν (M3) − ν (M2) = θ23, p3/p2 = χ (M2, M3) .

}
(2.20)

Across the expansion wave, the flow is isentropic. Thus, only three equations of
the above four are independent. We need supplement a relation for deflection angle
continuity,

θ1 − θ13 = −θ2 + θ24. (2.21)

Now we consider the interaction of Rt and Cs (figure 9b). Comparing with a shock
wave, the intensity of the compression Cs is more weaker, but the shock wave relation
(2.1) still holds. Thus, the interaction of Rt and Cs is the same as the interaction of
Rt and r (§ 2.2.3).

2.2.5. Overall algorithm

Now we describe the global algorithm used to obtain the slipline and reflected shock
wave. Only the important waves and their interactions are retained. The reflected
waves Cs due to the impingement of Rs on the reflected shock wave and the sliplines
ct due to interaction between Rt and Cs are supposed to have very weak influence so
that they are simply ignored.

The overall solution process are described now. First, assume that we have an initial
guess of the Mach stem height H ∗

m, from which we also have an initial value for the
position of the triple point (xT , yT ). From the quasi-one-dimensional-flow theory, the
height H ∗

s of the sonic throat is related to H ∗
m by

H ∗
m

H ∗
s

= σ
(
Mm

)
, (2.22)

where Mm is the average Mach number immediately behind the Mach stem.
Through the three-shock theory the flow parameters in the region 1, 2 and 3

(figure 6d) are known. The shape and position of the leading part of slipline (before
point B), as well as the intensity and the direction of the expansion waves Rs produced
over it is solved using the model in § 2.2.2 independently. In addition, the interaction
of expansion waves Rc and the reflected wave r can also be solved independently
using the model in § 2.2.3. Now the flow conditions in the left and on the top of
the wave interaction region are known. The flow parameters in the wave interaction
region can thus be solved using the models provided in §§ 2.2.3 and 2.2.4 and following
a sequence from left to right and from top to bottom. The expansion fan Rc and
the slipline generated waves (Rs and Cs) are represented by a finite number of Mach
waves in order to solve the above algorithm.

With the above process, the position and shapes of the slipline s and reflected
shock wave r can be obtained. The sonic flow must occur at a section of minimum
area. Thus, we examine whether the minimum distance between the slipline and the
reflecting surface is exactly equal to H ∗

s . If not, we need to update the value of H ∗
m

and repeat the whole process described above until the exact H ∗
m is obtained.

3. Results and discussions
In §§ 3.1–3.2, we will study the flow structure using the model presented in § 2 and

compared to CFD, for the case M2 > 1. The case M2 < 1 will be briefly considered
in § 3.3. The conclusion of this work is stated in § 3.4.
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 (a)

Theory

CFD

 (b)

Theory
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 (c)

Theory

CFD

Figure 10. Comparison of analytical configuration with the numerical results. (a) M0 =
2.84, θw = 20.8o, w/H0 = 1.42; (b) M0 = 4.5, θw = 25o, w/H0 = 1.1; and (c) M0 =
4.96, θw = 28o, w/H0 = 1.1.

3.1. Structure of the flow

3.1.1. Overall configuration

Figure 10(a) displays the flow under the conditions M0 = 2.84, θw = 20.8 and w/H0 =
1.42. We observe good agreement between theory and CFD results. In this example,
the reflected shock wave is very close to the tail of the wedge surface. Figure 10(b)
displays a comparison for the case the triple point is near to the transmitted Mach
waves under the flow conditions M0 = 4.5, θw = 25 and w/H0 = 1.1. Under the
influence of the expansion fan, the reflected shock wave deviates upwards gradually.
As described in § 2, the influence of the sliplines produced by the interaction of the
expansion waves with reflected shock wave are ignored in our prediction. We see
from figure 10(b) that, the impact of this approximation on the reflection structure is
very small. Figure 10(c) is a middle state of the above two examples which is under
the flow conditions M0 = 4.96, θw = 28 and w/H0 = 1.1. Though the transmitted
waves predicted by the theory do not exactly match with the ones obtained by CFD,
for which the slipline is oscillatory due to Kelvin–Helmholtz instability, the shape of
slipline and reflected shock wave are well predicted by the theory.
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Figure 11. Shape and deviation of the analytical slipline. (a) M0 = 2.84, θw = 20.8o,
w/H0 = 1.42; (b) M0 = 4.5, θw = 25o, w/H0 = 1.1; and (c) M0 = 4.96, θw = 28o, w/H0 = 1.1.

3.1.2. Shape of the slipline and the reflected shock wave

Figure 11 gives the shape and deviation of the analytical slipline for three cases. Across
the Mach waves reflected from the slipline, the flow direction deflects downwards.
While across the transmitted Mach waves, the flow direction deflects upwards.
Therefore, the slipline is first convex and then concave with an inflexion point B

where the leading transmitted Mach wave intersects the slipline and the second-
order derivative mutates abruptly from negative to positive. Continuously deflecting
upwards, the slipline becomes horizontal at point P where the first-order derivative
is exactly zero.

Figure 12 displays the pressure gradient along the slipline for M0 = 4.5, θw =
25, w/H0 = 1.1. In average, the theory follows the CFD results, but the CFD results
display oscillation which comes from the oscillatory nature of the slipline, due to
Kelvin–Helmholtz instability. This supersonic disturbance transmits downstream in a
fixed direction (upper right), spoiling the transmitted waves from the reflected shock
wave (see figure 3). This role of the oscillating slipline, observed in CFD, is not
covered out by the theory, which may be the main cause for difference (though slight)
between theory and CFD.

Figure 13 gives the shape and deviation of the analytical reflected shock wave
for two cases. Before interacting with the expansion fan, the reflected shock wave
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Figure 13. Shape and deviation of the analytical reflected shock wave.
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maintains a straight line. The reflected shock wave becomes to deviate upwards from
point F where the leading Mach wave intersects it. The first-order derivative begins
to increase and the second-order derivative mutates abruptly from zero to a positive
value. Due to the interaction with the expansion wave, the reflected shock wave
becomes weaker gradually and deviates upwards more seriously. Thus, the second-
order derivative increases gradually. The reflected shock wave become straight form
point Q where the last Mach wave intersects it. At the very moment, the first-order
derivative becomes a constant and the second-order derivative dips to zero.

3.2. Height of the Mach stem

As a by-product, the present model also yields a Mach stem height. A comparison of
the normalized Mach stem height Hm/H0 between the present analytical results and
those of Li & Ben-dor (1997) and Mouton & Hornung (2007) is shown in table 1.
In addition, the CFD results are added to this table. When compared with the CFD
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Hm/H0

CFD Theory

Case M0 θw w/H0 Current Li & Ben-dor (1997) Mouton & Hornung (2007)

1 2.84 20.8 1.42 0.191 0.202 0.118 0.140
2 4.0 23.0 1.28 0.110 0.121 0.076 0.106
3 4.0 25.0 1.19 0.213 0.223 0.167 0.300
4 4.5 23.0 1.10 0.052 0.058 0.036 0.051
5 4.96 28.0 1.10 0.283 0.292 0.269 0.395
6 5.0 26.9 1.10 0.203 0.213 0.191 0.296

Table 1. Mach stem height for various conditions.

results, the present predictions seem to be better than those of Li & Ben-Dor (1997)
and Mouton & Hornung (2007) for most of the conditions. This comparison should
not be interpreted as superiority of one model over the others. The previous models
have the advantage of simplicity while leading to useful results. The present study
shows that the deviation of the previous models from CFD results come from the
ignorance of the waves over the slipline.

Figure 14 displays a comparison of the present results with those of Li & Ben-dor
(1997), of Mouton & Hornung (2007) and current CFD results. the wedge angle is
maintained at a fixed value in figures 14(a) and 14(b), and the free-stream Mach
number is maintained at a fixed value in figures 14(c) and 14(d). It appears that the
agreement between the current predictions and the current CFD results is better than
others except the case when the Mach stem height is very small. The main reason may
be attributed to the difficulty in the determination of the location of the sonic-throat
near the von Neumann transition point and the numerical code used.

One additional test example is with M0 = 3.98 and Ht/L = 0.37, for various values
of θw . This test case has been considered by several authors. We compare the present
prediction not only with those of Li & Ben-Dor (1997) and Mouton & Hornung
(2007), but also with the earlier prediction of Azevedo & Liu (1993), experimental
data of Hornung & Robinson (1982) and CFD results of Vuillon et al. (1995). It
is shown in figure 15 that, the predicted Mach stem height is a little higher than
the experimental data. Actually, the height of the Mach stem is highly dependent
on the geometry of the test wedge models in experiments. Irving Brown & Skews
(2004) pointed out that the Mach stem height decreases with the aspect ratio due
to the three-dimensional relieving effect, where the increase in lateral flow relieves
the pressure over the surfaces of the wedges. In overall, there is a great discrepancy
between various CFD and experimental results around θw = 23, possibly due to
the three-dimensional effect in experiment or due to the lack of grid convergence
in the very early CFD computation. Despite of these uncertainty by early CFD or
experimental results, our prediction appears to follow better the data for most of the
conditions. Though our model slightly overestimates the Mach stem height, the error
appears to be uniform for all conditions.

Figure 16 shows the contour lines of the Mach stem height depending on the wedge
angle θw and the free-stream Mach number M0 based on the present prediction
under the condition w/H0 = 1.1. The Mach stem height is zero at the von Neumann
transition point and increase with M0 and θw . It is important to note that the MR
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Figure 14. Comparisons of the current non-dimensional Mach stem height with those of Li
& Ben-dor (1997), of Mouton & Hornung (2007) and current numerical results (w/H0 = 1.1).
(a) θw = 26o, (b) θw = 28o, (c) M0 = 4.5 and (d) M0 = 6.

wave configuration is unstable when its reflected shock wave reaches the wedge
surface. This is why a maximum wedge angle θmax exists.

3.3. The flow field for the case M2 < 1

Figure 17 displays two CFD results of Mach number contours for M2 < 1. For this
case, the MR configuration includes not only the expansion (compression) waves
produced over the slipline, their interaction with other flow structure, but also a
subsonic region behind the first part of the reflected shock wave. This arises a new
flow structure, which is the sonic line. The fact that the subsonic region may interact
with the slipline, reflected shock wave, as well as the expansion waves, makes it
difficult to study the shape of the sonic line.

The shape and position of sonic lines have been studied by Bloor (1964) for
hypersonic blunt body problem, by Sauer (1947) for the design of nozzle throat, and
for airfoils at sonic inflow conditions (see e.g. Landau & Lifshitz 1987). The flow
near a nozzle throat is isentropic and a small perturbation analysis can be used
to determine the sonic line. For hypersonic blunt body flow, the flow immediately
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behind the detached shock can be treated by an extended Newtonian theory and only
near the body surface this theory should be modified, through expansion in terms of
stream function in Bloor (1964). As a result, the sonic line is perpendicular to the
wall near the body. For airfoils, the asymptotic behaviour of the sonic line at infinity
can be found in Landau & Lifshitz (1987).

For the present Mach reflection problem, the subsonic flow behind the reflected
shock wave is non-isentropic so that the transonic small disturbance theory does not
hold. The sonic line problem for the MR appears to be more difficult than the above
three cases, for which the sonic line is bounded, at least at one end, by the wall. In
the present problem the sonic line is embedded in a region which itself has unknown
boundaries (slipline and shock waves) to be coupled with the entire flow.

The non-uniformity of the subsonic flow is supposed to be caused by the converging
of the flow tube below the slipline, which is assumed to be straight here (its curving is
supposed to be of secondary importance). Hence the pressure along the slipline can
be roughly modelled by the quasi-one-dimensional theory

ps

pT3

= χ
(
MT3

, Ms

)
,
Hs (ξ )

H ∗
s

= σ (Ms) , (3.1)

where Ms is the mean Mach number below the slipline and T3 is the point behind
the Mach stem and immediate to the triple point. Knowing H ∗

s the above relations
lead to the pressure and Mach number distributions ps = ps (ξ ) and Ms = Ms (ξ ) at
ξ along the slipline.

Immediately above the slipline the flow is assumed to be isentropic (since the slipline
is also a streamline) so that we have

ps

pT2

= χ
(
MT2

, Ms,a

)
,

ps

pT2

=
ργ

s,a

ρ
γ
T2

, (3.2)

where ρs,a and Ms,a are the density and Mach number immediately above the slipline,
respectively and T2 is the point behind the reflected shock wave and immediate to the
triple point. From (3.1)–(3.2) we obtain

pT2
χ

(
MT2

, Ms,a

)
= pT3

χ
(
MT3

, Ms (ξ )
)
, (3.3)

from which we can solve for ξs (s1 in figure 6c), the sonic point on the slipline, by
letting Ms,a = 1, or pT2

χ(MT2
, 1) = pT3

χ(MT3
, Ms(ξs)).

The quasi-one-dimensional theory is suitable for the region not close to the Mach
stem. Unfortunately, the subsonic region behind the reflected shock wave is usually
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relatively small, and the sonic point on the slipline is near to the triple point. For
this case, the pressure obtained from the quasi-one-dimensional theory is not very
accurate. Here, we also use the flow field obtained by Tan et al. (2006), based on the
small-disturbance equation and is effective in the region not far away from the Mach
stem, to determine the pressure along the slipline. The velocity in the subsonic pocket
behind the Mach stem is (Tan et al. 2006)

Vx = V0 +

[
(γ − 1) M2

0 + 2
] [

2γM2
0 − (γ − 1)

]
Hm (γ + 1)2

(
M2

0 − 1
) a0θT3

(x − xT ) ,

Vy = − (γ − 1) M2
0 + 2

γ + 1
θT3

Hm
a0y.

⎫⎪⎪⎬
⎪⎪⎭ (3.4)

Here, θT3
is the deflection angle across the Mach stem at the triple point.

Along the slipline, the flow is isentropic and the total enthalpy is a constant, thus
we have

ρs = ρT3
(ps/pT3

)1/γ ,
2γ

γ + 1

ps

ρT3
(ps/pT3

)1/γ
+

γ − 1

γ + 1
(Vx + Vy)

2

=
2γ

γ + 1

pT3

ρT3

+
γ − 1

γ + 1
M2

T3
a2

T3
. (3.5)

Considering y = yT − (x − xT ) θT3
and inserting (3.4) in (3.5), we obtain the sonic

point on the slipline.
Figure 18 displays the flow under some flow conditions with subsonic flow behind

the reflected shock wave. We observe that the sonic point on the slipline predicted
by (3.5) is very close to the CFD results. The sonic point on the reflected shock
wave appears to be at (at least near) the point the expansion fan (Rc) first intersects
the reflected shock wave. Behind the subsonic flow region there are still compression
waves generated over the slipline. The reflected shock wave is slightly curved in order
to adapt to the pressure decrease along the slipline. This curvature generates entropy
waves which transmit the sonic line and then intersect the transmitted Mach waves
(Rt ). But these entropy waves seem to be weak enough.

Bloor (1965) obtained for the blunt body case that the sonic line is perpendicular to
the body (two-dimensional case). If the sonic line is well ahead the transmitted Mach
wave (Rt ), it should be perpendicular to the slipline from the simple consideration of
Mach waves immediately behind the sonic line (since the Mach angle should be π/2
near sonic point).

However, from the CFD results (figure 18), the sonic line is not perpendicular
to the slipline. Rather, it seems to coincide with the leading transmitted wave (Rt ).
Heuristically, we may explain this should be so. The reflected shock would be weak
enough (nature prefers to the weakest solution) so that the subsonic flow region
would be as large as possible. If the subsonic pocket should extend to the transmitted
expansion waves, then due to the fact the Mach number in the subsonic flow is close
to 1, a sudden expansion due to the transmitted Mach waves makes transition to
supersonic immediately.

One would be also interested in having a global algorithm to obtain the Mach stem
height, similar to the case of M2 > 1. For a fast evaluation of Mach stem height one
may follow the integral approach proposed by Chow & Chang (1974) for nozzle free
jet flows and for M2 < 1.
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Figure 18. Mach contours for M2 < 1 (w/H0 = 0.6). (a) M0 = 2.2, θw = 19o,
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3.4. Conclusion

The inclusion of a series of expansion and compression waves over the slipline, due to
the pressure variation below the slipline, is the main contribution of this work. These
waves make the flow non-uniform behind the reflected shock wave and determine,
jointly with the transmitted expansion waves, the shape of the slipline.

This study not only reveals the non-uniform nature of the flow behind the reflected
shock wave, but also shows that the global flow structure, including the Mach stem
height, is affected significantly by the slipline generated waves. The former can be
used to more reasonably guide CFD study and interpret CFD results. The latter can
be used to explain or remedy the departure of previous models from CFD results.

The consideration of the case M2 < 1 reveals interesting features of the sonic line.
It appears that the subsonic flow region immediately terminate when encountering
the transmitted expansion waves. This is understandable since the Mach number in
the subsonic flow pocket is close to 1, so that a sudden expansion (due to transmitted
expansion waves) makes it transit immediately to supersonic flow. This means that
the sonic line can be simply regarded as in the close vicinity of the first transmitted
expansion wave.
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The usefulness of this work is the revealing of new flow features and their impact
on the global flow structure, though the algorithm is more complicated than the
previous models.

The authors are grateful to the referees for their valuable remarks. This work was
supported by the Chinese NSF (Contract No. 90716009).
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